I. Unit: Mathematics Department
 School: Arts & Sciences
 Unit Administrator: Rose Strahan

II. Data and information for department:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total credit hours, undergraduate</td>
<td>5367</td>
<td>5061</td>
<td>4934</td>
<td>4737</td>
<td>4685</td>
</tr>
<tr>
<td>Total credit hours, graduate</td>
<td>141</td>
<td>12</td>
<td>90</td>
<td>27</td>
<td>33</td>
</tr>
<tr>
<td>Summer credit hours, undergraduate</td>
<td>426</td>
<td>393</td>
<td>354</td>
<td>393</td>
<td>420</td>
</tr>
<tr>
<td>Summer credit hours, graduate</td>
<td>45</td>
<td>6</td>
<td>87</td>
<td>21</td>
<td>30</td>
</tr>
<tr>
<td>Number of graduates, BS</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Number of graduates, BSE</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Number of graduates, MED</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

The number of students currently enrolled in each major are as follows: 11 mathematics majors (BS program), 22 mathematics education majors (BSE program) and 8 pre-engineering majors (2-year program).

There are two courses that are taught in the mathematics department that do not appear on the print out of faculty load or credit hour production—MAT 099 and CUR 487. In spring semester there were 21 students in MAT 099 and 67 students in MAT 099 in fall semester. In the fall semester there were 7 students in CUR 487. Part of the decrease in credit hour production from 1998 to 1999 can be attributed to the decrease in demand for MAT 300. In the fall of 1999, the social science department offered their own statistics course for the first time in several years. This eliminated 2 sections of MAT 300 as social science, criminal justice, and political science majors no longer take MAT 300. This change gave the mathematics department an additional half-time faculty member to teach mathematics classes.

A review of class size for 1999 indicates that we are teaching some sections of 100-200 level courses for less than 10 students. As indicated above we have gained a half-time position by the change in demand for MAT 300. Also in fall semester we have an additional half-time faculty member as Mike Kinnison teaches two sections during that semester. To give all faculty members a full load we sometimes offer more sections than is necessary.

The low enrollment in MAT 203 is not surprising but does concern the department. Are
business majors taking the course at another school and transferring the credit? Why do we need only 4 sections? Is the enrollment in the school of business decreasing? The change from MAT 121 Finite Mathematics to MAT 203 Business Calculus is partially responsible, however, the enrollment in MAT 121 was decreasing prior to the change. In spring and summer (the last times MAT 121 was offered) the pass rate was 76%, the failure rate was 17% and withdrawal rate was 7%. In the fall in MAT 203 the passing rate was 45%, the failure rate was 32%, and the withdrawal rate was 23%. The Dean of the College of Business is very aware of this and has talked with many students about the course. He feels that lack of algebra background is the major reason that students are unsuccessful in business calculus. We will evaluate the course along with student attendance and prior experience in mathematics courses at the end of the semester to try to identify reasons for the lack of success.

Our graduate program continues to be a major concern for the department. We have one student who should graduate in May 2000 and only one other who is actively working on a degree. Should we again try to recruit students? Should we delete the program? What information should we give the two students who have shown interest in the program? How do you justify offering the necessary graduate courses for one or two students?

III. Personnel

Noteworthy activities and accomplishments

Paula Norris participated in a three day workshop at Christian Brothers University in June 1999. The title of the workshop was Making Calculus Meaningful for Students in Management, Life, and Social Sciences.

In October 1999 Louise Rodgers participated in a workshop using ArcView, a GIS/Remote Sensing computer software. This training is part of the Mississippi Space Commerce Initiative. During September and October 1999 she presented 3 workshops on Estimation to teachers of grades 3-7 in Indianola. They did activities using estimation in computation, measurement and problem solving. During the spring semester 1999 Louise worked as an adjunct faculty member for MVSU at the Greenwood Center. She taught a course entitled Trends in Teaching Mathematics for their Masters in Elementary Education degree.

Rose Strahan assisted with two first timers' sessions at the annual National Council of Teachers of Mathematics conference in San Francisco in April.

Stella Wear revised and taught MAT 577 Mathematics for Teachers of the Middle Grades during the first summer term for teachers from Westerline School District in Greenville. She also participated in the pilot implementation of the Student Teaching Assessment Instrument (STAI replaces MTAI) by adapting the general evaluation forms to correspond to content specific mathematics indicators as per Mississippi Mathematics
Framework 2000, National Council of Teachers of Mathematics standards and NCATE requirements. Stella is currently chairing the committee to plan a Mathematics Tournament for Delta State University.

Clifton Wingard coached and took a team of students to the student team competition during the LA/MS Section of the Mathematical Association of America meeting in Jackson on March 5-6, 1999. He received Faculty Development Funds to attend a professional development short course entitled Using the Web in Mathematics which was sponsored by the International Conference on Technology in Collegiate Mathematics. This workshop was held on May 17-20, 1999 in Huntsville, Texas. Clifton wrote a series of internet based problems to accompany the seventh edition of Calculus for Business, Economics, and the Social and Life Sciences by Hoffmann and Bradley for the McGraw Hill Companies.

New positions requested with justification
None

Recommended change of status (promotion/tenure/change in responsibilities)
Louise Rogers from Associate Professor to Professor. Her portfolio and “Change of Status” form are attached.

IV. Degree Program Addition/Deletions and/or Major Curriculum Changes
None
V. Department Goals for 1999

A. Goal 1:
 Provide a foundation for professional careers in mathematics.

B. Institutional Goal:
 Review and update undergraduate and graduate programs to adequately address basic
 skills, knowledge, and competencies necessary for students to be properly prepared in
 their chosen fields, to complete licensure requirements, enter the work force, and/or
 continue advanced study in graduate or professional school.

C. Expected Results:
 See B.S. degree Outcomes 2 and 3 and B.S.E. degree outcome 3 for the evaluation
 procedures and the results.

D. Evaluation Procedures:
 See B.S. degree Outcomes 2 and 3 and B.S.E. degree outcome 3 for the evaluation
 procedures and the results.

E. Actual Results of Evaluation:
 See B.S. degree Outcomes 2 and 3 and B.S.E. degree outcome 3 for the evaluation
 procedures and the results.

F. Use of Evaluation Results:
 See B.S. degree Outcomes 2 and 3 and B.S.E. degree outcome 3 for the evaluation
 procedures and the results.
V. Department Goals for 1999

A. Goal 2:
Provide for the mathematical needs of the general student.

B. Institutional Goal:
Review and update undergraduate and graduate programs to adequately address basic skills, knowledge, and competencies necessary for students to be properly prepared in their chosen fields, to complete licensure requirements, enter the work force, and/or continue advanced study in graduate or professional school.

C. Expected Results:
All students will pass at least one regular college mathematics course.

80 percent of the students completing MAT 300 will make a grade of C or better indicating the ability to use a computer to analyze data and draw inferences from the results. MAT 300 is now required for biology and nursing.

D. Evaluation Procedures:
Analysis of grades from the first regular college mathematics course taken.

Analysis of the grades from MAT 300.

E. Actual Results of Evaluation:
The following data compare the unsuccessful grades (failure or withdrawal) in MAT 103 Quantitative Reasoning and MAT 104 College Algebra for fall 1998 and fall 1999.

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall 1998</th>
<th>Course</th>
<th>Fall 1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT 103</td>
<td>16 of 83 or 19.3%</td>
<td>MAT 103</td>
<td>16 of 61 or 26.2%</td>
</tr>
<tr>
<td>MAT 104</td>
<td>60 of 241 or 24.9%</td>
<td>MAT 104</td>
<td>62 of 241 or 25.7%</td>
</tr>
</tbody>
</table>

The enrollment in MAT 099 dropped from 92 in fall 1997 to 57 in fall 1998 and then went up to 67 in fall 1999. We assumed the drop was due to the change in policy which means that the credit for this course does not apply toward graduation. The failure rate for fall 1999 is also up from fall 1998 as indicated by the data below.

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall 1998</th>
<th>Course</th>
<th>Fall 1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT 099</td>
<td>14 of 57 or 24.6%</td>
<td>MAT 099</td>
<td>22 of 67 or 32.8%</td>
</tr>
</tbody>
</table>
The recent IHL policy that requires all entering freshmen with a 16 or less on the math subcore of the ACT to take MAT 099 during the first semester of enrollment and recommends that those students whose score is 17 to 19 also take the course will cause the enrollment in the course to increase even more for fall 2000. Based on the scores for the freshmen class of 1999, the new policy would require 79 students to take MAT 099 and recommend an additional 113 take the course. Assuming that approximately 20% of those with a score from 17 to 19 take the course, we would need three sections of MAT 099 to accommodate the students.

1999 (Spring, Summer, and Fall) MAT 300

Enrolled - 176; completing the course - 163; Ds - 19; Fs - 10.

82.2% of the students completing MAT 300 in 1999 made a grade of C or better compared to 72.5% in 1998.

F. Use of Evaluation Results:

MAT 103 does seem to be meeting the needs of some students. The faculty who teach the course are in agreement that many of the MAT 103 students would have great difficulty with the regular college algebra course.

The new IHL policy is somewhat disturbing as it seems that we are back in the business of remediation. Offering three sections of MAT 099 means the department’s credit hour production will seem low since that course was not used in reporting credit hour production for the department for 1999. We need to monitor the progress of the students who take MAT 099 very carefully to determine their success in additional mathematics courses. The course carries no credit hours toward graduation and the grade in the course does not affect the student’s GPA, therefore, the students do not take the course seriously. This makes teaching the course very difficult for the instructor.

Recommendation: The Mathematics Department will recommend to the Academic Council that a student must have a grade of at least C in MAT 099 to be allowed to enroll in MAT 103 or 104.

A major concern: Some mathematically weak students are not ready for any college mathematic course. What can we do for the student who meets all admission requirements and has little mathematical knowledge? Many of these students are functioning on a junior high mathematics level.

The percentage of students making a grade of C or better in MAT 300 is higher than it was in 1998. This increase is due to the change in population within the course. The students in fall 1999 were mathematics education, nursing, or biology majors.
The MAT 300 course is heavily dependent on the use of a computer to perform statistical calculations. At the present time the mathematics department does not have a computer lab. Although we have access to a computer lab in another building, this is still a problem. MAT 300 classes need to be able to have class meetings in the lab and also have other times that the lab is open with the course instructor available to assist students.

Appropriate assessment in MAT 300 requires each student to work individually on a computer. Currently we have access to a lab in Jobe Hall where this is possible if the computers are all working. Although having to go to a different building is inconvenient, this is a vast improvement over giving tests by using three or more locations with other faculty helping the instructor in monitoring the students as was necessary in the past.

Recommendation/Request: The Mathematics Department is once again requesting funding for a computer lab in Walters 260 to be used by the Biology, Mathematics, and Physical Science Departments.

VI. Student Outcomes 1999

Degree: B.S.
Major: Mathematics

A. Student Outcome 1:
Students will acquire a broad knowledge of the fundamental principles of mathematics enabling them to make connections between concepts and demonstrate analytical skills.

B. Expected Results:
80 percent of the graduates will make a grade of C or better in upper level/capstone courses.

C. Evaluation Procedures:
Analysis of grades in upper level/capstone courses.

Development of a portfolio by each student during the MAT 490 course. The portfolio contains various samples of the student's work, including a writing sample and a sample demonstrating computer knowledge/skills.

D. Actual Results of Evaluation:
Two students graduated in spring semester of 1999 with a B.S. degree in mathematics. One student complete the requirements for this degree in the summer of 1999. Each of these students successfully completed the portfolio requirement for MAT 490 and made
an A in the course. One of the students made a C in MAT 411 and MAT 442 and a B in MAT 405 and MAT 443. Another of the students made an A in MAT 405, a B in MAT 411 and MAT 442, and a D in MAT 425. The third student made a C in MAT 442 and MAT 443, a B in MAT 411, and a D in MAT 425.

E. Use of Results:

From analyzing grades made in the capstone courses mentioned above, it should be noted that for these particular students MAT 425, MAT 442, and MAT 443 are the ones in which student performance is weakest. MAT 425, MAT 442, and MAT 443 are theoretical courses and require much abstract production. There appears to be a trend among most students in this degree program to make lower grades in the courses that require a high level of abstraction. The committee noted this trend in last year's report. The committee for the assessment of this degree program feels that the recent addition of a course in discrete mathematics to the curriculum may assist in enhancing student preparation for higher level mathematics courses. Even though the primary emphasis in the discrete course at this time is problem solving, it is our hope that this course will help provide the needed emphasis on foundational topics that will aid students in making the transition to a higher level of abstraction.

Incorporation of technology in the courses taught in the department continues to be concern of the committee. We are hopeful that in the future the department will have a computer lab which will help facilitate this objective. Even though graphing calculators are used extensively in the calculus sequence, instruction would be greatly enhanced if these as well as other courses had a computer lab component.
VI. Student Outcomes

Degree: B.S.
Major: Mathematics

A. Student Outcome 2:
Students who enroll in graduate school will be adequately prepared for graduate study.

B. Expected Results:
90 percent of the students responding to the survey and enrolled in a graduate mathematics program will indicate "STRONGLY AGREE" or "AGREE" in response to the statement: "The curriculum I followed at Delta State prepared me adequately for the graduate program I entered after graduation."

C. Evaluation Procedures:
Survey of B.S. degree graduates enrolled in graduate school

D. Actual Results of Evaluation:
There are no 1999 graduates who are currently enrolled in a graduate mathematics program. However, there are two who are enrolled in graduate programs in education. In response to the survey question mentioned above, each of these students indicated that they strongly agreed that the curriculum they followed at Delta State adequately prepared them for their graduate programs in education.

E. Use of Results:
Within the past several years the number of students graduating with the B.S. degree and enrolling in graduate programs in mathematics has been declining. Although several have entered graduate study in other areas such as business and education, few are enrolling in graduate mathematics programs. It is interesting to note that both of the students who are currently enrolled in graduate programs in education were at one time pursuing the BSE degree and later switched over to the BS degree program. This may help explain why they are now involved in graduate education programs.

The surveys will be continued for next year. The department is making the establishment of a data base for graduates a priority. Information is being gathered by exit interviews and telephone to try to insure a method of having accurate records for our alumni. The departmental newsletter is also being used to maintain contact with alumni and to request up-to-date information on each alumnus.
VI. Student Outcomes

Degree: B.S. Major: Mathematics

A. Student Outcome 3:
Employers will express general satisfaction with graduates.

B. Expected Results:
Employers will express general satisfaction with the graduates who have been employed in a mathematics-related area at least one year.

C. Evaluation Procedure:
Employer survey questionnaire.

D. Actual Results of Evaluation:
There was only one 1998 B.S. degree graduate. This student is not working at this time, but is instead enrolled in a graduate program in computer science. As soon as this student has been employed for at least one year, a form will be sent to this student's employer. Of the 1999 B.S. degree graduates, one is teaching and one is employed in a computer-related capacity. After these students have been employed for at least one year in their respective positions, forms will be sent to their employers.

E. Use of Results:
Since there was no employer to respond to the questionnaire, we have no results to use. We encourage students in this degree program to either minor in computer information systems or to take as many computer courses as possible while they are undergraduates. The combination of mathematics and computer information systems makes the graduate very marketable.

The surveys will be continued for next year. The department is making the establishment of a data base for graduates a priority. Information is being gathered by exit interviews and telephone to try to insure a method of having accurate records for our alumni. The departmental newsletter is also being used to maintain contact with alumni and to request up-to-date information on each alumnus.
VI. Student Outcomes

Degree: B.S.E. Major: Mathematics Education

A. Student Outcome 1:
 Students will demonstrate a knowledge of mathematics adequate for teaching mathematics in grades 7-12.

B. Expected Results:
 90 percent of the graduates will earn a score of 520 or better on their first attempt on the Mathematics Specialty Area Test of the Praxis.

 All students will develop a portfolio containing samples of lesson plans, writing samples, demonstration of computer knowledge/skills, and other student work.

C. Evaluation Procedures:
 Analysis of scores made on the Mathematics Specialty Test of the Praxis.

 Evaluation of the portfolio.

D. Actual Results of Evaluation:
 100% of the 1999 graduates (5 out of 5) made a score of 520 or better on their first attempt on the Mathematics Specialty Area Test of the Praxis.

 All of the 1999 graduates received passing scores on the evaluation of the portfolio. In the area of demonstration of computer knowledge/skills, one graduate had the opportunity to incorporate Powerpoint slides into each day of his student teaching portfolio. These skills were taught by the cooperating teacher.

E. Use of the Results:
 Our department has a policy that we will not recommend a student to student teach until the student has achieved a 2.5 gpa in mathematics. Two of the five 1999 graduates repeated upper level mathematics courses more than one time to achieve the 2.5 gpa in mathematics. This represents an improvement on the number of repeated courses in prior years. When our new admission requirements for full admission to mathematics programs have been in place for a longer period, we hope that student background in mathematics will be sufficient to eliminate the necessity of this course repetition. Since all of the 1999 graduates passed the Mathematics Specialty Area Test of the Praxis on the first attempt, we are encouraged that these gpa requirements are indeed assuring a stronger foundation in mathematics.

 In spite of the fact that one of the 1999 graduates demonstrated additional computer
skills in his student teaching assignment, we are asking our students to acquire
computer skills even though we do not have the computer resources available to assist
them in doing this. A computer lab available to mathematics education majors is
essential to adequately prepare students to function in technologically rich school
environments.
VI. Student Outcomes

Degree: B.S.E.
Major: Mathematics Education

A. Student Outcome 2:
Students will demonstrate proficiency in instructional methods and techniques in teaching mathematics.

B. Expected Results:
95% of the mathematics education majors will satisfy each of the indicators 1 through 12 of the Mississippi Teacher Assessment Instrument (MTAI) or indicators 1 through 8 of the Student Teacher Assessment Instrument (STAI) with the required score or better.

C. Evaluation Procedure:
Analysis of the results of the MTAI, Indicators 1-12.
Analysis of the results of the STAI, Indicators 1-8.

D. Actual Results of Evaluation:
All 1999 graduates made the required scores on the MTAI or STAI Indicators.

E. Use of Results:
A sign off sheet was provided for the classroom teacher to show approval for the portfolio, and two weeks prior to teaching of the portfolio is the deadline for submitting the portfolio to the university supervisor. These time frames allowed time to correct any deficiencies.

The mathematics department faculty member who supervises the student teachers will schedule a conference to be held on campus with each student teacher prior to the submission of the portfolio. This conference will give the university supervisor an opportunity to discuss the plans for the portfolio with the student and to make suggestions for the completion of the document.
VI. Student Outcomes

Degree: B.S.E.
Major: Mathematics Education

A. Student Outcome 3:
Employers will express satisfaction with our graduates.

B. Expected Results:
Employers will express general satisfaction with graduates who have been teaching for at least one year.

C. Evaluation Procedure:
Employer survey questionnaire.

D. Actual Results of Evaluation:
School Administrators were asked to rate the 1998 graduates concerning their competency in mathematics, effectiveness as a teacher, professional attitude, and desire for continued study in mathematics. The rating was on a scale with a low of 1 and a high of 5. All of the 1998 graduates are in full-time teaching positions. The supervisors for seven of the eight graduates responded to the questionnaire. All of the supervisors indicated an above average satisfaction with our graduates' work (mean rating of 4.40). Since two of the 1997 graduates' forms were not received from supervisors of their first teaching positions, forms were sent to school administrators of their second teaching positions. Both supervisors responded. The rating average for one of these graduates was 3.0 and the supervisor commented that this graduate "worked at our school for 1 year and then took a job outside the teaching field." The rating average for the other graduate was 4.4 with no individual rating below 4.

E. Use of Results:
The results indicate that the graduates are performing their jobs well. Only one 1998 graduate received a rating below 4. This rating of 3 was in "effective use of teaching strategies." This graduate took CUR 487, Methods of Teaching Secondary Mathematics three semesters prior to student teaching, required extra supervision during the student teaching semester, and was required to correct several deficiencies in the teaching portfolio. This indicates that the methods course should be taken no earlier than one or two semesters prior to student teaching. Since one of the 1997 graduates has taken a job outside the teaching field, a mentoring program for our graduates during their first years of teaching may be beneficial to help these new teachers work through the frustrations on new challenges. In the past we have had some problems tracking our graduates to get evaluations. To help prevent this problem, exit interviews after student teaching and E-mail communications during their first year of teaching have been instituted.
VI. Student Outcome

Degree: M. Ed. Major: Mathematics Education

A. Student Outcome 1:
Students will demonstrate an in-depth knowledge of several areas of mathematics, including analysis, geometry, and algebra.

B. Expected Results:
Students must maintain a B average in the required courses which include a course in analysis, geometry, and algebra. They must also pass the Departmental Comprehensive Examination.

C. Evaluation Procedures:
Successfully completing the required courses and passing the Comprehensive Examination. In order to pass the examination the student must achieve an overall average of 80 or above with a deficiency in at most one area, or an overall average of 85 or above with deficiency in not more than two areas. Deficiency is defined as a score of below 80 on one section of the examination.

D. Actual Results of Evaluation:
There were two graduates in this degree program in 1999. One of the graduates was successful in completing all parts of examination on the first attempt. The other graduate was unsuccessful on two sections of the examination on the first attempt. In accordance with the department's policy on the comprehensive examination, the graduate committee agreed to authorize one re-examination in each of the two areas of deficiency. The second tests were taken during the next semester and the student was successful on both tests on the second attempt.

E. Use of the Results:
Analysis of the test results for these students led to another critical look at the test and the amount of time allocated for the test. When the comprehensive examination is given this semester both the overall time and the time needed for each question will be considered.
VI. Student Outcomes

Degree: M. Ed. Major: Mathematics Education

A. Student Outcome 2:
Students will demonstrate knowledge of current trends and teaching resources appropriate for the secondary mathematics program.

B. Expected Results:
A score of 80 or above on the MAT 601 subtest of the comprehensive.

C. Evaluation Procedure:
The MAT 601 subtest of the Departmental Comprehensive Examination.

D. Actual Results of Evaluation:
One of the students who graduated in May 1999 successfully completed the MAT 601 subtest in 1998, however, one of the students had take a second test.

E. Use of Results:
Time allocated for the completion of the comprehensive examination seemed to be a problem for one of the students. We are analyzing the procedure and will make some change in the structure of the test or in the time allocated for completion before the test is given again.
VI. Student Outcomes

Degree: M. Ed.
Major: Mathematics Education

A. Student Outcome 3:
 Students will demonstrate knowledge of the mathematics teacher's role and responsibility as a professional educator.

B. Expected Results:
 Students will complete the education core courses with a B average.

C. Evaluation Procedure:
 Grades in the education core courses (EPY 601, ELR 605, CUR 608) will be analyzed.

D. Actual Results of Evaluation:
 The two students graduated in 1999 completed the core courses with an A average.

E. Use of Results:
 The actual results were the expected results, so the goal was met.

Since the core education courses are not taught by the Mathematics Department, the department is not recommending any changes in the courses. To assure the Mathematics Department that the graduates have a knowledge of the mathematics teacher's role and responsibility as a professional educator, a component has been placed in the curriculum for MAT 601 requiring the student to demonstrate that knowledge through readings and essay writing.
VII. Unit Goals for 2000-2001

A. Goal 1:
 Publish a departmental newsletter.

B. Institutional Goal:
 B. Develop a university relations and marketing plan.

 This goal is also supported by recommendations from the strategic plan as the
 newsletter will be used 1) to enhance alumni relations, 2) to recruit students, and 3) to
 obtain information to modify our courses and programs.

C. Assessment Procedures: Did we publish and mail a newsletter?

D. Expected Results: We expect to hear from a number of mathematics alumni.

E. Actual Results: We published a newsletter last spring and did indeed hear from a number
 of alumni indicating the desire to continue to maintain contact with DSU.

F. Use of Results: We want to share some of the information we received last year with all
 mathematics alumni.
A. Goal 2:
 Prepare students to teach using appropriate technology and prepare students who will enter the work force in non-teaching jobs to function in today's technology dependent society.

B. Institutional Goals:
 E. Improve the use of instructional technologies.
 L. Review academic programs for currency in curriculum, pedagogy, instructional technology use and mission-relatedness.

C. Assessment Procedures:
 Meeting this goal will be dependent on having available to the department the resources necessary. At the present we have no computer lab available for use by our classes.

D. Expected Results:

E. Actual Results:

F. Use of Results:
A. **Goal 3:**

Strengthen the B.S.E. degree requirements to comply with the recommendations on the preparation of secondary teachers from the National Council of Teachers of Mathematics and NCATE.

B. **Institutional Goal:**

Review academic programs for currency in curriculum, pedagogy, instructional technology use and mission-relatedness.

C. **Assessment Procedures:**

Compare the requirements for the B.S.E. degree to the recommendations for the preparation of teachers published by the National Council of Teachers of Mathematics.

D. **Expected Results:**

Currently our program does not meet all of the outcomes recommended by NCTM and used by NCATE. We want to strengthen our program so that it will meet ALL of the recommended outcomes. Again the lack of resources will affect the outcome since we have no computer laboratory for our use so we are very limited in our use of instructional technology.

E. **Actual Results:**

F. **Use of Results:**
A. Goal 4:
Initiate an annual Mathematics Tournament to be held each spring on our campus and sponsored by the Mathematics Department.

B. Institutional Goal:
B. Develop a university relations and marketing plan.

This goal is also supported by recommendations from the strategic plan as the tournament will enhance the University’s relationship with local area schools and will be used to recruit students.

C. Assessment Procedures:
Meeting this goal will be dependent on having available to the department the resources necessary. This has been a goal for some time for the department. High school students from across the Delta go to Mississippi College and/or the Mississippi School for Mathematics and Science to participate in a mathematics tournament. We want them to come to Delta State to participate in a tournament. We will need money budgeted for this in order to attain this goal.

D. Expected Results:

E. Actual Results:

F. Use of Results:
Budget Plan Justification and Prioritization

75530 Rental of Office Equipment and 75660 Maintenance Contracts-Equipment: The requested increases in these items is a request for an adequate copying budget for next year. I am not sure how the cost of copying is broken down into these categories, but I know that the department never has enough money allocated to cover the cost of copying for the year. This is our number 1 priority.

7600 Commodities: This increase is necessary to cover the cost of the paper for copying. The current budget of $1000 covers the cost of some of the general office supplies only. It is not sufficient to cover the cost of copying paper and supplies for 8 faculty members. This is priority number 2.

78250 Data Processing Equipment and 75870 Computer Software: This computer lab would be housed in Walters 260 and would be used by the departments of biological sciences, mathematics, and physical sciences. Justification for the lab has been provided in the report (Unit Goal 2 for 1999-2000 and Unit Goal 2 for 2000-2001, B.S. Outcome 1, B.S.E. Outcome 1). Priority number 3.

Mathematics Tournament: Funding is necessary to achieve Unit Goal 4 for 2000-2001. Priority 5.
Dr. Strahan indicated that this was the only page she received of her "tentative budget plan". Therefore, she typed up the following requests on the following pages:

<table>
<thead>
<tr>
<th>ACCOUNT</th>
<th>Description</th>
<th>Amount 1</th>
<th>Amount 2</th>
<th>Change</th>
<th>Change 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>61200</td>
<td>Faculty</td>
<td>397,725.00</td>
<td>427,550.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>61400</td>
<td>Clerical & Secretarial</td>
<td>14,300.00</td>
<td>15,375.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>62801</td>
<td>Regular Student Employment</td>
<td>1,000.00</td>
<td>1,000.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>63000</td>
<td>Fringe Benefits</td>
<td>104,927.00</td>
<td>111,641.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td>Travel</td>
<td>3,300.00</td>
<td>3,300.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>75210</td>
<td>Postage & Post Office Charges</td>
<td>350.00</td>
<td>360.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>75220</td>
<td>Telephone Local Service</td>
<td>4,056.00</td>
<td>4,056.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>75230</td>
<td>Telephone Long Distance</td>
<td>100.00</td>
<td>100.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>75530</td>
<td>Rental of Office Equipment</td>
<td>.00</td>
<td>1,181.00</td>
<td>+319.00</td>
<td>.00</td>
</tr>
<tr>
<td>75660</td>
<td>Maintenance Contracts-Equipment</td>
<td>1,400.00</td>
<td>900.00</td>
<td>+500.00</td>
<td>.00</td>
</tr>
<tr>
<td>75790</td>
<td>Other Professional Fees & Services</td>
<td>105.00</td>
<td>95.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>75840</td>
<td>Subscriptions</td>
<td>120.00</td>
<td>130.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>75870</td>
<td>Computer Software Acquisitions</td>
<td>350.00</td>
<td>550.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>7600</td>
<td>Commodities</td>
<td>1,000.00</td>
<td>1,000.00</td>
<td>+500.00</td>
<td>.00</td>
</tr>
<tr>
<td>78210</td>
<td>Office Furniture & Equipment</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
</tbody>
</table>

Justification:

Goal 1: Departmental Newsletter
(Printing & mailing)
Mathematics Department

The Mathematics Department cannot integrate technology into classes because we do not have the resources available. We are failing to meet the needs of students who will live in a world dependent on technology. Our students going into the job market are severely handicapped whether they are entering the world of work in a non-educational setting or entering the teaching profession. We have no computer lab for use with our classes even though two of our courses--MAT 200 and MAT 300--are dependent on computers for assignments, projects, and testing. This is a request for a computer lab.

Computer lab to be located in Walters 260:
- 30 PCs with full multimedia capacity--30@$2000 = $60,000
- 3 laser printers for the lab network--3 @ $3000 = $9,000
- 1 color printer--$500
- 1 color scanner--$400
- 1 ceiling mounted overhead projector system--$7,000

Basic software for each machine (word processing, spreadsheet, database package)--30 @ $200 = $6,000

Computational software (Derive or another computer algebra system)--30 @ $250 = $7500

STATBox or similar stat package--30 @ $250 = $7500

Geometry software, Geometer’s Sketchpad--$900 for site license

Presentation software for instructor’s console--$200

Total for computer lab -- $99,000
<table>
<thead>
<tr>
<th>Category</th>
<th>Details</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scholarship</td>
<td>$500, $300, $200 per semester of Freshman year</td>
<td>$2000</td>
</tr>
<tr>
<td></td>
<td>Given to top 3 individuals of written test.</td>
<td></td>
</tr>
<tr>
<td>Other Awards</td>
<td>Trophies 3 levels to school teams in two divisions.</td>
<td>$200</td>
</tr>
<tr>
<td></td>
<td>Metals (48 @ $6 each)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Given to individual members of winning teams.</td>
<td>$288</td>
</tr>
<tr>
<td></td>
<td>Relay prizes (4 @ $8 each)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Given to individual members of winning team.</td>
<td>$32</td>
</tr>
<tr>
<td>Lunch</td>
<td>$5 per person (approximately 200 participants*)</td>
<td>$1000</td>
</tr>
<tr>
<td>Supplies</td>
<td>Printing of tests, answer keys, results.</td>
<td>$200</td>
</tr>
<tr>
<td></td>
<td>Name tags, markers, signs.</td>
<td>$50</td>
</tr>
<tr>
<td></td>
<td>Postage</td>
<td>$50</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>$3870</td>
</tr>
</tbody>
</table>

Cost to school

- $10 per 4 member team
- transportation

We have obtained a list of 80 (both public and private) schools in the Delta area that we will invite to our tournament. The above figures were computed with an approximate response rate of one-half the schools. We would expect a minimum of a 4-member team and one sponsor from each school.