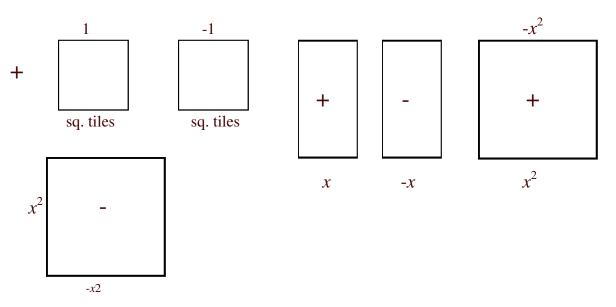
Algebra/Geometry Institute Summer 2004

Lesson Plan 2

Faculty Name: Joseph Robinson School: Greenville-Wesson High/Greenville Mississippi Grade Level: 9th

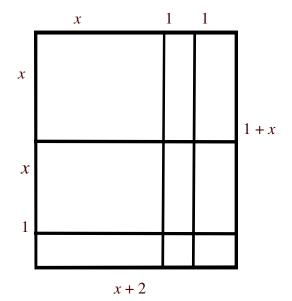

- 1 Teaching objective(s) The teacher will define and classify polynomial by degree and terms. The teacher will demonstrate the addition and subtraction using algebra tiles.
- 2 **Instructional Activities**
 - The students will classify the polynomials: 6, -2x, 3x + 1, $-x^2 + 2x 5$, $4x^3 8$, • $2x^4 - 7x^3 - 5x + 1$.

Polynomials Degree

•

Classified by Degree Classified by no. terms

The student will use algebra tiles to add and subtract polynomials/



- The student will use algebra tiles to find the sum: •
 - 1. $(-x^2 + x 1) + (4x^2 + 2x 3)$ 2. $3x^2 + 5x 6 + (-2x^2 3x 6)$

 - 3. $(5x^2 3x + 4) + (-x^2 + 3x 2)$
 - 4. $(2x^2 x 1) + (-2x^2 + x + 1)$ 5. $(-x^2 + 3x + 7) + (x^2 7)$

- The student will use algebra tiles to find the difference:
 - 1. $(x^2 + 3 + 4) (x^2 + 3)$
 - 2. $(x^2 2x + 5) (3 2x)$ 3. $(2x^2 + 5) - (-x^2 + 3)$
 - 4. $(x^2 + 4) (2x^2 + x)$
 - $4. \ (x + 4) (2x + x)$

The rectangle at the right has the width of (x + 2) and the height of (2x + 1).

- 1. Copy the model. What is the area of each part of the rectangle?
- 2. Find the product of (x + 3) and (2x + 1) by adding the areas of the parts to get an expression for the total area.
- 3. Copy and complete the equation: (x + 2) (2x + 1).

3 Materials and Resources McDougal Littell Algebra, Prentice Hall Algebra Practice Workbook, Overhead projector.

4 Assessment

Check point exercises.

- 1. Identify the coefficients and classify the polynomial: $2x + 4 - x^3$.
- 2. Simplify the expression: $(2x^2 + 9x - 4) + (6x - 3x^2 + 1) - (x^2 + x + 1).$