Algebra/Geometry Institute Summer 2009

Faculty Name: Kimberly Taylor

School: Tunica Middle

Grade Level: 9th – 12th

1 Teaching objective(s)

- The students will recognize, explore, model, and continue a pattern utilizing color tiles.
- The students will understand, represent, and analyze patterns, relations, and functions.

2 Instructional Activities

- The teacher will introduce the lesson by making the following statements:
 - Tell students that patterns are all around them.
 - Ask students where do they see patterns?
 - Suggest poems(rhymes, aabb, bbaa), quilts, floor tiles, music(rhymes, meters, refrains), word families(cat, bat, hat).
 - The teacher will discuss with students why these patterns exist and ask them what they think a pattern is. Discuss the meaning of a pattern.
 - The teacher will ask students why they think patterns are essential to learning algebra.
 - The teacher will suggest to students that finding and extending patterns are valuable steps towards making predictions and making generalizations. Patterns help you to develop algebraic thinking by showing you a visual of the connection between algebra and problem solving.
 - Tell students that before they leave class today, they will be able to recognize a pattern, continue that pattern, and organize their findings in a chart.
 - Also, tell students that they will utilize this data to plug in necessary information in order to figure out algebraic equations via different formulas.

- The teacher will place a pattern on the overhead and give students the following directions:
 - Tell students that each table has a bucket of color tiles and that they will only be using blue, red, and green. Tell them to each form the pattern that they see on the overhead.
 - Then tell students to add a row of squares all around the rectangle. Make the corner squares blue, the side squares red, and the top and bottom squares, green.
 - Tell students that this process, building one stage from the previous one is called *recursive*.
 - Tell the students to observe their design and comment on their patterns.
 - Tell students to count the number of blue, red, and green tiles in Stages 1, 2, and 3, and record the information on their charts.
 - Ask students which color is growing at the slowest rate? At the fastest rate?
 - The teacher will ask students what they could do to come up with the growth rates without using a plethora of tiles.
 - Tell students to use the data they collected from their chart to come up with a formula to get the growth rate of each colored tile plus the total growth rate.
 - The teacher will circulate the room to ensure that students are coming up with the correct formulas.
 - Give students a hint like since they know that the blue squares grew constantly by 4, figure out where would the 4 fit into a formula and so on.
 - Tell students to work individually to get the growth rate of all 3 colored tiles for stages 4 and 5.
 - Now ask students what they noticed about the blue, red, and green growth rates?
 - The teacher will walk around to each student to observe whether they are plugging in their chart data to work the equations.
 - Have students to volunteer to put their formulas on the overhead and explain them. Students must have the following formulas (blue is 4n+2, red is 2n², green is 2n²+2n, total number of squares 4n²+6n+2).
 - Clear up any discrepancies.
 - Now tell students that they will work individually to take an assessment on the skills they learned today.

- 3 Materials
 - Overhead Projector
 - Transparencies with 1-inch squares
 - Color Tiles
 - Pattern Chart

Resources

- Van de Walle, John A. (2004). <u>Elementary and Middle School</u> <u>Mathematics: Teaching Developmentally</u>. -5th ed. (pp.418-422).
- <u>http://math.rice.edu/~/lanius/Lessons/Patterns/recans2.html</u>, Rectangular Patterns (adapted lesson). Retrieved from the World Wide Web on June 7, 2009.

4 Assessment

- Teacher-created activity sheet (Attachment 4).
- The students will complete activity sheet 4 individually. They will be given color pencils/markers to color in their patterns on the grid paper.
- The teacher will walk around and monitor the students as they work.
- The activity sheet will be graded, and given back to students for discussion and correction.

Activity Sheet

Name_____ Date_____ Directions: Read the following prompts and do exactly what they say.

- Add a row of squares all around the rectangle.
- Make the corner squares blue, the side squares red, and the top and bottom squares green. This process is called *recursive* because you are building one stage from the previous one.
- Count and record the number of blue tiles in Stages Number1 -3.
- Count and record the number of red tiles in Stages Number 1-3.
- Count and record the number of green tiles in Stage Number 1-3

Stage No.	1	2	3	4	5	n
No. Blue Squares						
No. Red Squares						
No. Green Squares						
Total No. Squares						

Questions to Ponder?

- 1. Which color is growing at the slowest rate?
- 2. Which color is growing at the fastest rate?
- 3. How can you determine how many squares of each color will be in the 4th and 5th stage without tediously using a plethora amount of color tiles?
- 4. Write your formula for the growth rate of the blue squares, and show all of your work.
- 5. Write your formula for the growth rate of the red squares, and show all of your work.
- 6. Write your formula for the growth rate of the green squares, and show all of your work.
- 7. Write your formula for total number of squares, and show all of your work.

Activity Sheet Answers

Name_____ Date_____ Directions: Read the following prompts and do exactly what they say.

- Add a row of squares all around the rectangle.
- Make the corner squares blue, the side squares red, and the top and bottom squares green. This process is called *recursive* because you are building one stage from the previous one.
- Count and record the number of blue tiles in Stages Number1 -3.
- Count and record the number of red tiles in Stages Number 1-3.
- Count and record the number of green tiles in Stage Number 1-3

Stage No.	1	2	3	4	5	n
No. Blue Squares	6	10	14	18	22	4n+2
No. Red Squares	2	8	18	32	50	2n ²
No. Green Squares	4	12	24	40	60	2n ² +2n
Total No. Squares	12	30	56	90	132	4n ² +6n+2

Questions to Ponder Answers for Activity Sheet

- 1. blue
- 2. green
- 3. Utilize the data from your chart to figure out a formula.
- 4. 4n+2
- 5. $2n^2$
- 6. $2n^2 + 2n$
- 7. $4n^2 + 6n + 2$

Utilize this graph paper to continue the pattern and answer the previous questions.

Attachment # 3

Pattern Assessment

Name_____ Date_____ Directions: Read the following prompts and do exactly what they say.

- Add a row of squares all around the rectangle.
- Make the corner squares yellow, the side squares pink, and the top and bottom squares green. This process is called *recursive* because you are building one stage from the previous one.
- Count and record the number of yellow tiles in Stages Number 1-3.
- Count and record the number of pink tiles in Stages Number 1-3.
- Count and record the number of green tiles in Stages Number 1-3.

Stage No.	1	2	3	4	5	n
No. Yellow Squares						4n+6
No. Pink Squares						
No. Green						
Squares						
Total No. Squares						

Questions to Ponder?

- 1. Which color is growing at the slowest rate?
- 2. Which color is growing at the fastest rate?
- 3. How can you determine how many squares of each color will be in the 4th and 5th stage without tediously using a plethora amount of color tiles?

4. Write your formula for the growth rate of the yellow squares, and show all of your work.

- 5. Write your formula for the growth rate of the pink squares, and show all of your work.
- 6. Write your formula for the growth rate of the green squares, and show all of your work.
- 7. Write your formula for total number of squares, and show all of your work.

Pattern Assessment Answers

Date

Directions: Read the following prompts and do exactly what they say.

• Add a row of squares all around the rectangle.

Name

- Make the corner squares yellow, the side squares pink, and the top and bottom squares green. This process is called *recursive* because you are building one stage from the previous one.
- Count and record the number of yellow tiles in Stages Number 1-3.
- Count and record the number of pink tiles in Stages Number 1-3.
- Count and record the number of green tiles in Stages Number 1-3.

Stage No.	1	2	3	4	5	n
No. Yellow Squares	10	14	18	22	26	4n+6
No. Pink Squares	8	18	32	50	72	2(n+1) ² or 2n ² +4n+2
No. Green Squares	12	24	40	60	84	2(n+1) ² + 2(n+1) or 2n ² +6n+4
Total No. Squares	30	56	80	132	182	4n ² +14n+ 12

Questions to Ponder Answers for Activity Sheet

- 1. yellow
- 2. green
- 3. Utilize the data from your chart to figure out a formula.
- 4. 4n+6
- 5. $2(n+1)^2$ or $2n^2 + 4n+2$
- 6. $2(n+1)^2 + 2(n+1)$ or $2n^2 + 6n+4$
- 7. $4n^2 + 14n + 12$